
PostgreSQL Adores a
Vacuum

Quinn Weaver <quinn@pgexperts.com>
http://fairpath.com/vacuum-slides.pdf

This work is licensed under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

mailto:quinn@pgexperts.com
http://fairpath.com/vacuum-slides.pdf

Background: MVCC

When you DELETE a row in PostgreSQL, it doesn't
really go away.

It just gets marked invisible to transactions that
happen after the DELETE.

PostgreSQL implements UPDATE like DELETE-
plus-INSERT.

xmin and xmax are hidden columns.

They determine which transactions see which row versions.

Price of dog food hasn't changed.

Price of cat food was UPDATEd recently; transactions 250 to 500 see
$20, while newer transactions see $25.

MVCC: the good

This versioning scheme is called MVCC (= multi-
version concurrency control).

Efficient

No locking

Scales to high number of concurrent transactions.

MVCC: the bad

The $20 cat food row is visible to old transactions.

Eventually it will be visible to no one.

We call this "bloat."

(auto)vacuum removes bloat. More on this soon.

MVCC: the bad
Indexes too get bloat:

leaf node t_tid's that no longer point at live rows

and inner nodes that point at them

and inner nodes that point at those inner nodes

et cetera

A btree index page has to be empty before it's removed by
(auto)vacuum.

(cf. src/backend/access/nbtree/README)

Why is bloat bad?
Bloat fills up pages

… so you have to read more pages to get the data
you want.

This slows things down

And eats memory

Your working set gets bigger, maybe doesn't fit in
RAM

Why is bloat bad?

Bloated btree indexes take more steps to traverse

and occupy more space in memory.

Indexes can get really big.

Remember, autovacuum doesn't help much.

Why is bloat bad?

And, of course, bloat eats up disk space.

Bloat: what to do about it?

Someone needs to garbage-collect "$20 cat food."

= the autovacuum daemon.

Works out of the box since PostgreSQL 8.1 (2005).

Usually does a pretty good job.

The autovacuum daemon

But for high-traffic sites, the defaults aren't good
enough.

autovacuum can't keep up.

Bloat grows out of control.

How do you know if this is happening to you?

Measuring bloat

git clone https://github.com/pgexperts/pgx_scripts

We wrote some queries.

PostgreSQL-Licensed

https://github.com/pgexperts/pgx_scripts

Measuring bloat: table bloat
 databasename | schemaname | tablename | can_estimate | est_rows | pct_bloat | mb_bloat | table_mb
--------------+------------+-------------+--------------+-----------+-----------+----------+-----------
 my_database | public | huge_table | t | 180395000 | 64 | 45848.25 | 71777.266
 my_database | public | big_table_1 | t | 70566100 | 37 | 9357.82 | 25277.641
 my_database | public | big_table_2 | t | 78034400 | 34 | 9214.13 | 26818.281
(3 rows)

This shows potential problem tables only, not all tables.

Note huge_table has very high absolute bloat

But low percentage bloat.

That's probably OK!

Measuring bloat

It's normal to have have some bloat!

UPDATEs and DELETEs happen all the time.

autovacuum marks old rows as bloat.

Then their space get reused for new rows

(in the same table).

Measuring bloat
As much as 75% bloat can be normal, but It
Depends.

The important thing is rate of growth.

Use a cron job (weekly?)

Immediately after autovacuum, bloat will be the
same

Again, vacuum merely marks space as reusable.

Measuring bloat: index bloat

batz_idx is small, but…

has high percent bloat.

It is much larger than the table data.

foo_idx1, foo_idx2: high absolute bloat

$ git clone https://github.com/pgexperts/pgx_scripts
$ psql -f index_bloat_check.sql my_database

 database_name | schema_name | table_name | index_name | bloat_pct | bloat_mb | index_mb | table_mb | index_scans
----------------+-------------+------------+------------+-----------+----------+----------+-----------+-------------
 my_database | public | foo | foo_idx1 | 76 | 6053 | 7935.242 | 17479.820 | 403646039
 my_database | public | foo | foo_idx2 | 74 | 5357 | 7239.094 | 17479.820 | 129716832
 my_database | public | bar | bar_idx | 56 | 1631 | 2915.008 | 5029.945 | 8951148
 my_database | public | batz | batz_idx | 92 | 75 | 81.063 | 27.734 | 179949
 my_database | public | quux | quux_pkey | 60 | 19 | 31.906 | 39.063 | 30449474
(5 rows)

Fixing bloat

So what if bloat keeps growing?

That means autovacuum is not keeping up

(with UPDATEs and DELETEs).

Let's fix it!

Fixing past bloat

Bloat = technical debt.

Pay it down.

If you have a lot of bloat, your best bet is
pg_repack.

pg_repack
https://github.com/reorg/pg_repack

How it works:

pg_repack makes a new, non-bloated table

containing only the non-bloat part of your table (including
indexes).

Then it fiddles with the system catalogs to swap in the new table
for the old one.

So much better than VACUUM FULL (which
AccessExclusiveLocks the table the whole time).

https://github.com/reorg/pg_repack

pg_repack caveats

pg_repack does take a brief AccessExclusiveLock
when it finishes.

If it can't acquire that lock, eventually it will cancel
competing queries

(or even kill backends!)

Unpredictable: you can't control when it will finish.

pg_repack caveats
Requires free space = 2 * size of table you're repacking.

This could be a problem if you're repacking to regain
scarce space!

Lots of I/O, since it's reading/rewriting the whole table.

Requires installing an extension, so it doesn't work on
RDS.

Flexible Freeze
git clone https://github.com/pgexperts/flexible-
freeze

Takes a different approach from pg_repack:

An extra-aggressive manual VACUUM.

Marks rows reusable; doesn't repack.

Run as a cron job nightly (or whenever traffic is
low).

https://github.com/pgexperts/flexible-freeze
https://github.com/pgexperts/flexible-freeze

Flexible Freeze
Good practice: cron job =

Bloat query before

flexible_freeze.py [OPTIONS]

You can give FF a "hard" cutoff (stop vacuuming
mid-table) or soft (finish current table).

More on FF soon…

Indexes are special

Next we'll talk about preventing future bloat.

This mostly means tuning autovacuum.

But we've noted (auto)vacuum works poorly for
indexes.

What to do?

De-bloating indexes:
pg_repack

The easy way: just pg_repack the index's table.

A good idea if the table is bloated

Or if there are a bunch of bloated indexes on one
table

(these things tend to go together).

De-bloating indexes: CREATE
INDEX CONCURRENTLY

The hard, targeted way: build an identical index:

1. CREATE INDEX CONCURRENTLY my_dup_index ON my_table(column_1, column_2);

2. [Make sure the index built OK!]

3. DROP INDEX my_original_index;

De-bloating indexes: CREATE INDEX
CONCURRENTLY

How to check the index built OK:

\d+ my_table

At the bottom, you'll see the index:

 "my_dup_index" UNIQUE, btree (column_1, column_2) INVALID

If your new index is marked as INVALID, you need to DROP it
and try again.

http://www.postgresql.org/docs/current/static/sql-
createindex.html#SQL-CREATEINDEX-CONCURRENTLY

http://www.postgresql.org/docs/current/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
http://www.postgresql.org/docs/current/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

De-bloating indexes: CREATE
INDEX CONCURRENTLY

SQL for finding INVALID indexes:

SELECT pg_namespace.nspname AS namespace, pg_class.relname AS bad_index
 FROM pg_class
 JOIN pg_index ON pg_class.oid = pg_index.indexrelid
 JOIN pg_namespace ON pg_class.relnamespace = pg_namespace.oid
 WHERE (pg_index.indisvalid = false OR pg_index.indisready = false)
;

De-bloating indexes: CREATE
INDEX CONCURRENTLY

caveat: the index swap method doesn't work so well for
primary key indexes.

You can make a UNIQUE index identical to a PK.

But you need an AccessExclusiveLock to make it the PK/fix
FKs.

= Downtime

Better just pg_repack.

Preventing future bloat

OK, that takes care of old bloat. How to keep it
from recurring?

Tune autovacuum.

There are a lot of knobs to turn.
select name, setting, unit, context from pg_settings where name like '%vacuum%' or
name like '%analyze%';

How much to vacuum
autovacuum_max_workers

= max number of concurrent autovacuum
process

= number of tables that will be autovacuumed at
once

default: 3

5-6 is OK

How much to vacuum
maintenance_work_mem

= the max mem allowed per autovacuum
process

16MB is the default; this is *way* too low.

normally set to 1/16 of RAM

(but consider lowering if you raise
autovacuum_max_workers)

How often to vacuum
How often does autovacuum vacuum a table?

Every n rows written, where

n = autovacuum_vacuum_scale_factor *
[CURRENT NUMBER OF ROWS] +
autovacuum_vacuum_threshold

"Current number of rows" = pg_class.reltuples = an
approximation from the stats collector.

How often to vacuum
n = autovacuum_vacuum_scale_factor * [CURRENT
NUMBER OF ROWS] +
autovacuum_vacuum_threshold

autovacuum_scale_factor = .1 by default

so 10% of table rows

That's too high for large tables;

autovacuum happens too seldom.

How often to vacuum
n = autovacuum_vacuum_scale_factor * [CURRENT NUMBER OF
ROWS] + autovacuum_vacuum_threshold

For big tables, try a per-table "storage parameter" setting:

ALTER TABLE my_table SET (autovacuum_vacuum_scale_factor
= 0.02, autovacuum_vacuum_threshold = 50000);

Here we increase autovacuum_vacuum_threshold so autovacuum
doesn't overdo it.

Now time between vacuum is mostly constant

(less table-size-dependent).

How fast to vacuum
autovacuum tries not to hammer your system.

It takes many small breaks while working, each
autovacuum_vacuum_cost_delay ms long.

It counts I/O "cost units" up to autovacuum_vacuum_cost_limit, then
takes a break for autovacuum_cost_delay ms.

After finishing one table, it sleeps for autovacuum_naptime seconds.

So much for theory. You almost never need to hack these.

If you do, raise autovacuum_vacuum_cost_limit and lower
autovacuum_vacuum_cost_delay to trade higher disk and CPU
utilization for faster vacuuming.

Side note: autoanalyze
The autovacuum daemon has a cousin: the autoanalyze
daemon

It updates stats periodically.

Many of these GUCS have _analyze_ versions:
autovacuum_analyze_scale_factor,
autovacuum_analyze_threshold, …

These are much cheaper to raise, but don't bother…

… without specific evidence that bad stats are causing bad
query plans.

The story so far
So far, we've talked about bloat

What it is

Why it's bad

How to measure it

How to get rid of it

How to prevent it

XID overflow

But there's another danger.

Like bloat, it's a downside of MVCC.

It is XID overflow.

XID overflow

Review:

xmin and xmax are hidden columns.

They track which row versions are visible to which
transactions.

XID is actually a ring buffer.

XID overflow
An XID is a 32-bit int

2^31 - 1 transactions before it overflows; math here:
http://www.depesz.com/2013/12/06/what-does-fix-
vacuums-tests-to-see-whether-it-can-update-
relfrozenxid-really-mean/

Then PostgreSQL loses track, can't tell which table
rows are in the past and which are in the future.

This is XID overflow. It's a disaster.

http://www.depesz.com/2013/12/06/what-does-fix-vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/
http://www.depesz.com/2013/12/06/what-does-fix-vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/
http://www.depesz.com/2013/12/06/what-does-fix-vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/

XID overflow

XID overflow is so bad

postgres will shut down to prevent it.

And won't come up till you fix it.

Moral: don't turn autovacuum off.

Defense against XID
wraparound

"autovacuum freeze" = a special (auto)vacuum

It finds rows so old that every transaction can see
them.

Then it marks them as such by replacing xmin with
a magic value (RelFrozenXID == 2).

This can happen opportunistically during
"normal" (anti-bloat) vacuuming.

Defense against XID wraparound

Another line of defense:

autovacuum_freeze_max_age = 200000000 # 2 million

Hit it and a special autovacuum freeze starts.

If you cancel it, it will just start over again.

This might happen at a time when you have high traffic,
hosing I/O.

One temporary way around this: ALTER TABLE that_table
SET (autovacuum_freeze_max_age = 300000000);

Measuring XID usage

How do you know you're nearing wraparound?

We wrote some queries:

git clone https://github.com/pgexperts/pgx_scripts

https://github.com/pgexperts/pgx_scripts

Measuring XID usage
$ git clone https://github.com/pgexperts/pgx_scripts
$ psql -f pgx_scripts/vacuum/database_xid_age.sql my_database

 datname | xid_age | av_wrap_pct | shutdown_pct | gb_size
--------------------------+-----------+-------------+--------------+-----------
 postgres | 193237368 | 96.6 | 8.8 | 50.8
 my_database | 177012965 | 89.2 | 8.1 | 6520866.3
(2 rows)

psql -c 'show autovacuum_freeze_max_age'

200000000

So a forced freeze kicks in at 200M

And my_database has at least one table at 177M.

Which table(s)?

Measuring XID usage
$ git clone https://github.com/pgexperts/pgx_scripts
$ psql -f pgx_scripts/vacuum/table_xid_age.sql my_database

 relname | xid_age | av_wrap_pct | shutdown_pct | mb_size
---------------------------------------+-----------+-------------+--------------+---------
 small_table | 177012965 | 84.9 | 7.7 | 2596.0
 large_table | 169849047 | 88.5 | 8.0 | 226995.5
(2 rows)

small_table is the one that database_xid_age.sql "noticed"

but large_table is of far greater concern, because of its size.

Fixing XID problems
Explicit VACUUM FREEZE.

Scans the whole table; replaces xmin with
RelFrozenXid where appropriate.

must run on the whole table at once

(if you cancel, it has to start from Square 1).

Fixing XID problems
Flexible Freeze

git clone https://github.com/pgexperts/flexible-
freeze

Run as a cron job during low-traffic hours.

As with bloat, log XID query result before, after.

https://github.com/pgexperts/flexible-freeze
https://github.com/pgexperts/flexible-freeze

Preventing XID problems
Reduce vacuum_freeze_min_age.

Rows older than this will be frozen as autovacuum does its
de-bloat work

(i.e., opportunistically)

Warning: Lower setting = greater CPU utilization, more time
to vacuum table

Takes some tricky estimation; see See http://
www.databasesoup.com/2012/10/freezing-your-tuples-off-
part-2.html

http://www.databasesoup.com/2012/10/freezing-your-tuples-off-part-2.html
http://www.databasesoup.com/2012/10/freezing-your-tuples-off-part-2.html
http://www.databasesoup.com/2012/10/freezing-your-tuples-off-part-2.html

Shameless plug

I work at PostgreSQL Experts, https://pgexperts.com/

We're a consulting firm.

Look us up if you need a hand!

https://pgexperts.com/

Links
 These slides: http://fairpath.com/vacuum-slides.pdf

 Bloat queries, XID queries, other goodies: https://github.com/pgexperts/pgx_scripts

 Flexible Freeze: https://github.com/pgexperts/flexible-freeze

 pg_repack: http://reorg.github.io/pg_repack/ and https://github.com/reorg/pg_repack

 CREATE INDEX CONCURRENTLY caveats: http://www.postgresql.org/docs/current/static/sql-
createindex.html#SQL-CREATEINDEX-CONCURRENTLY

 Further reading: depesz on XID math: http://www.depesz.com/2013/12/06/what-does-fix-
vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/

 Further reading: Gabrielle Roth slides: https://wiki.postgresql.org/images/b/b5/
Groth_scale12x_autovacuum.pdf

 Further reading: Josh Berkus article on bloat: http://www.databasesoup.com/2012/09/freezing-
your-tuples-off-part-1.html

http://fairpath.com/vacuum-slides.pdf
https://github.com/pgexperts/pgx_scripts
https://github.com/pgexperts/flexible-freeze
https://github.com/reorg/pg_repack
http://www.postgresql.org/docs/current/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
http://www.postgresql.org/docs/current/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
http://www.postgresql.org/docs/current/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
http://www.depesz.com/2013/12/06/what-does-fix-vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/
http://www.depesz.com/2013/12/06/what-does-fix-vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/
http://www.depesz.com/2013/12/06/what-does-fix-vacuums-tests-to-see-whether-it-can-update-relfrozenxid-really-mean/
https://wiki.postgresql.org/images/b/b5/Groth_scale12x_autovacuum.pdf
https://wiki.postgresql.org/images/b/b5/Groth_scale12x_autovacuum.pdf
http://www.databasesoup.com/2012/09/freezing-your-tuples-off-part-1.html
http://www.databasesoup.com/2012/09/freezing-your-tuples-off-part-1.html

